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Abstract
We propose a simple method for calculating the ground state wavefunction of
an electron–hole pair confined in a heterostructure formed by a flat quantum
dot deposited on a thin wetting layer and imbedded in a matrix made of other
material. The calculations of the exciton ground state energy, the electron–
hole space pair correlation function and the density of the charge distribution
have been performed for In0.55Al0.45As–Al0.35Ga0.65As and Ga0.7Al0.3As/GaAs
quantum discs and rings. It is shown that the increase of the wetting layer
thickness and the strength of the external magnetic field applied parallel to the
axis lead to a lowering of the inner barrier height reinforcing the tunnelling of
the particles into the central hole region. We also analyse the charge distribution
related to the spatial separation of the particles due to the difference between
masses of the electron and the hole. The variation of the quadrupole momentum
sign with the increase of the ring inner radius and the appearance of the dipole
momentum oriented in the crystal growth direction with the increase of the
wetting layer thickness in the presence of the electron–hole pair are predicted.

1. Introduction

The progress in nanoscale technology has made possible the fabrication of quantum rings (QRs)
with a thickness about 2 nm, outer radius between 30 and 70 nm and a well defined centre
hole of about 10 nm radius [1]. A strong confinement in the growth direction provides in
these structures a considerable penetration of the wavefunctions of both the one-particle and
collective states into interior and exterior barrier regions. Therefore the question of whether
states of the conduction carriers (electron and hole) and their coupled state (exciton) in this
nanostructure could be considered as quasi-one-, two- or three-dimensional is a topic of much
interest. Additionally, in the case of a significant difference between electron and hole masses,
the degree of their tunnelling in the barrier regions might be very different. Therefore one could
expect a considerable spatial separation between particles with different charges in a quantum
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ring similarly to a flat In0.55Al0.45As/Ga0.65Al0.35As quantum disc where, as it has been shown
earlier in [2], more than 90% of the hole is inside the dot while only about 70% of the electron
is inside the dot due to a competition between the confinement and the tunnelling. A richer
diversity in the properties of the electron–hole pair in a QR should be expected in comparison
with the quantum disc case, owing to the additional possibility of the particles tunnelling in the
interior barrier region. The probability for this tunnelling is different for the electron and the
hole but in both cases it is significant as a consequence of the small effective barrier height for
the particles’ in-plane motion. The smaller the height of the QR above the wetting layer (WL)
and the greater the thickness of the WL, the lower is the barrier height in the interior junction
of the QR for the in-plane motion and the greater is the probability for the tunnelling. Besides,
the tunnelling toward the interior barrier region of the QR can be additionally reinforced by
introducing an external magnetic field applied parallel to the crystal growth direction. Any
accurate theoretical study of this specific character of the magnetoexciton confinement in
quantum dots with a ring-like geometry suggests a great computational effort associated to
the presence of WLs both in the interior and exterior regions.

Previously, different mathematical techniques such as the finite element [2, 3],
variational [4–7], matrix diagonalization [8], or fractional-dimensional [9] methods have been
used to analyse the effect of the confinement in quantum dots (QDs) on the exciton spectrum.
These techniques give consistent results with the experimental data, but they entail a lot of
computational effort. Recently, there has been proposed a simple variational procedure [10]
related to the fractal-dimensional approach [11] for calculating the ground state energy of an
exciton confined in a heterostructure which provides an efficient algorithm whose accuracy is
comparable with that of such sophisticated methods as the series expansion and Monte Carlo
technique [10].

In the present work we apply a fractal-dimensional approach in order to calculate
the energy, the spatial charge distribution and the electron–hole pair correlation function
corresponding to the ground state of an exciton in a QR taking to into account the effects related
to the particles tunnelling inside the WL ignored by others authors. We show that the electron–
hole pair correlation function can be expressed in terms of the radial part of the wavefunction of
a hydrogen-like atom in effective fractional-dimensional space. Our numerical results for the
exciton ground state energies in In0.55Al0.45As/Ga0.65Al0.35As and Ga0.7Al0.3As/GaAs quantum
discs in the limit case as the WL thickness tends to zero are in a good agreement with those
obtained previously by using different methods. It is demonstrated that the spatial charge
distribution within and around the ring related to the difference of the effective mass of the
electron and the hole is very sensitive to the variation of the outer and centre hole radii, the WL
thickness and the magnetic field strength.

2. Model

We describe the geometrical shape of a QR by means of the piecewise constant function
d(ρ), which defines the dependence of the thickness d of the In(Al)As layer, embedded in
the Ga(Al)As matrix, on the distance ρ from the axis of symmetry. With d0 the height of the
QR above the WL and db the thickness of the WL, we assume that d(ρ) is equal to d0 + db

inside the QR (Rint < ρ < Rext), and it is equal to db (a few atomic layers) [12] outside the QR
(figure 1). Here and in what follows Rint and Rext are the interior and exterior radii of the QR.

To be able to make a valid comparison between our method and the full 3D treatment
realized in [2] for a quantum disc, we consider for our simulations In0.55Al0.45As/Al0.35Ga0.65As
structures with the following values of physical parameters [2]: the dielectric constant ε =
12.71, the effective masses in the dot region and the region outside the dot for the electron are
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Figure 1. A 3D image of a QR.

mew = 0.076 m0 and meb = 0.097 m0, respectively, and for the hole mhw = mhb = 0.45 m0,
and the conduction and valence band offsets in the junctions are V0e = 358 meV and
V0h = 172 meV, respectively. Here and in what follows, subscripts e and h correspond
to the electron and the hole, respectively. We scale all lengths in terms of the exciton
effective Bohr radius a∗

0 = h̄2ε/μe2 ≈ 10.4 nm, all energies are in the exciton effective
Rydberg Ry∗, and the magnetic field strength is in terms of the first Landau level energy
expressed in Ry∗, γ = eh̄ B/2μcRy∗, μ being the electron–hole reduced mass inside the
dot, μ = mewmhw/(mew + mhw) ≈ 0.065 m0.

With re and rh the electron and hole position vectors, the dimensionless Schrödinger
equation for an electron–hole pair in an axially symmetrical QD in the presence of a magnetic
field oriented along the z-axis in the effective-mass approximation can be written in cylindrical
coordinates (rp = {ρp, ϑp, zp}; p = e, h) as

H (re, rh, τ )�(re, rh, τ ) = E(τ )�(re, rh, τ );
H (re, rh, τ ) = He (re) + Hh (rh) − 2τ/reh; τ = 0, 1
Hp

(
rp

) = −∇pηp∇p + γ 2ρ2/4 + Vp
(
ρp, zp

) ; ηp = μ/mp; p = e, h.

(1)

Here the case (τ = 0) corresponds to the neutral particles and τ = 1 to the electron–hole
pair, and reh denotes the electron–hole separation (reh = |re − rh|). The confinement potential
Vp(ρp, zp) is equal to zero inside the QR and the WL and it is equal to Vop, p = e, h outside
them. The parameter ηp for the electron is equal to ηew = 0.86 in the well and to ηeb ≈ 0.67 in
the barrier, and for the hole ηhw = ηhb ≈ 0.14.

For the neutral particles τ = 0 the Hamiltonian (1) can be separated, and the energies
Em,m′ and the functions �

(0)
m,m′ = �m,m′(re, rh, τ = 0) of two particles with angular momenta

m, m ′ = 0,±1,±2, . . . may be found by solving two independent one-particle problems:

Hp f (m)
p

(
rp

) = E (m)
p f (m)

p (rp); p = e, h (2a)

�
(0)

m,m′ = �m,m′ (re, rh, τ = 0) = f (m)
e (re) f (m′)

h (rh) ; E (0)

m,m′ = E (m)
e + E (m′)

h . (2b)

In order to find solutions of the one-particle wave equations (2a) we use the adiabatic
approximation [13], in which the rapid motion along z-direction in the cylindrical coordinates
can be separated from the slower motions in radial and angular directions and the one-particle
wavefunction in a flat QD can be written as

f (m)
p

(
rp

) = eimϑp fzp
(
zp, ρp

)
f (m)
ρp

(
ρp

) ; p = e, h. (2c)

Here fzp(z, ρ) is the exact ground state wavefunction for one-dimensional motion along the
z-axis in a quantum well with the barrier height V0p and the well width equal to the thickness
d(ρ) of the In0.55Al0.45As layer. The corresponding ground state energy for the motion along
the z-direction Ezρ(ρ) depends on the distance from the axis and it is equal to E (w)

zp inside the
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QR (Rint < ρ < Rext) and to E (b)
zp outside the QR (ρ < Rint or ρ > Rext), E (w)

zp and E (b)
zp

being the lowest level energies in a QW with barrier height V0p, and well widths d0 and db,
respectively. The radial part of the one-particle wavefunction is the solution of the following
two-dimensional central force problem:

− 1

ρ

d

dρ

[

ηpρ
d f (m)

ρp (ρ)

dρ

]

+ Ṽ (m)
p (ρ) f (m)

ρp (ρ) = E (m)
p f (m)

ρp (ρ);

Ṽ (m)
p (ρ) = Ezρ (ρ) + ηp

(
m2

ρ2
+ γ 2ρ2

4
+ γ m

)
.

(3)

To find energies E (m)
p and the radial parts of the one-particle wavefunctions f (m)

ρp (ρ) we solve
equation (3) numerically by using the trigonometric sweep method [14].

The two-particle problem (1) for an exciton is not possible to solve exactly and therefore
to find the ground state wavefunction �(re, rh, τ = 1) of the electron–hole pair we employ a
variational principle using to this end the Bastard-type trial function in the form of a product
of the wavefunction of the neutral particles corresponding to the lowest energy, �

(0)
m,m′ , with

an unknown variational function, 	(reh), which takes into account the particles’ correlation
caused by electron–hole attraction and depends only on the electron–hole separation:

� (re, rh, τ = 1) = 	 (reh) �
(0)
m,m′ (re, rh, τ = 0) = 	 (reh) f (m)

e (re) f (m′)
h (rh) . (4)

The simple trial function (4) does not take into account the effects related to the mixing of
the one-particle states due to the electron–hole attraction. In principle, it could be improved
by replacing in (4) the single one-particle wavefunction by a linear combination of functions
corresponding to some low-lying states. For the sake of mathematical convenience we use
below the simple trial function (4) in which the quantum numbers m and m ′ refer to the lowest
energy levels. In a quantum disc this level is given by m = m ′ = 0 in any magnetic field,
but in a QR due to the Aharonov–Bohm effect the quantum numbers m and m ′ increase as the
strength of the magnetic field grows.

The energy of the exciton ground state E is found by minimizing the ratio

E [	] =
〈

f (m)
e (re) f (m′)

h (rh) 	 (reh)

∣
∣∣ H (re, rh, τ = 1)

∣
∣∣ f (m)

e (re) f (m′)
h (rh) 	 (reh)

〉

〈
f (m)
e (re) f (m′)

h (rh) 	 (reh)

∣
∣
∣ f (m)

e (re) f (m′)
h (rh) 	 (reh)

〉 .

Taking the functional derivative with respect to 	(r) gives a wave equation of the form

− 1

P0(r)

d

dr
P1(r)

d	 (r)

dr
+ 2

r
	(r) = −Eb	(r); Eb = E (m)

e + E (m′)
h − E, (5)

where Eb is the exciton binding energy and the functions P0(r) and P1(r) are given by

P0(r) =
∫

dre

∫ ∣
∣ f (m)

e (re)
∣
∣2

∣
∣
∣ f (m′)

h (rh)

∣
∣
∣
2
δ (|re − rh| − r) drh (6)

P1(r) =
∫

dre

∫
(ηe (rh) + ηh (rh))

∣∣ f (m)
e (re)

∣∣2
∣∣
∣ f (m′)

h (rh)

∣∣
∣
2
δ (|re − rh| − r) drh. (7)

When the tunnelling of the particles in the matrix region is small the difference between the
functions P0(r) and P1(r) can be disregarded since the identity ηe(re) + ηh(rh) = 1 is fulfilled
inside the regions of the QR and the WL. In this case P1(r) ≈ P0(r) and the wave equation (5)
acquires a form of that for a hydrogen atom in an effective space with the radial part of the
Jacobian P0(r):

− 1

P0(r)

d

dr
P0(r)

d	(r)

dr
+ 2

r
	(r) = −Eb	(r) (8)
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The Jacobian P0(r) and the envelope function 	(r) are intimately related to the spatial pair
correlation function (SPCF) P(r, τ ), which gives the density of the probability of finding the
electron and hole separated by a distance r :

P(r, τ ) = 〈δ (|re − rh| − r)〉 =
∫

dre

∫
δ (|re − rh| − r) |� (re, rh, τ )|2 drh. (9)

Comparing equations (6) and (9) one can see that the Jacobian is equal to the SPCF for two
neutral particles (τ = 0) confined in a nanostructure, P0(r) = P(r, τ = 0). For the exciton
(τ = 1) the SPCF, P(r) = P(r, τ = 1), can be presented as

P(r) =
∫

f 2
e (re) dre

∫
δ (|re−rh|−r) f 2

h (rh) 	2 (|re − rh|) drh = P0(r)	2(r) = χ2(r).

(10)

The function χ(r) = √
P(r) = 	(r)

√
P0(r) can be considered as the one-particle

wavefunction associated to the generalized coordinate corresponding to the separation between
two particles, whose squared value coincides with the SCPF.

In such a way the function P0(r) is a measure of the probability to find an electron and a
hole separated by the distance r in their free motion in a QD whereas the squared value of the
function 	(r) gives the ratio of the SPCFs, 	2(r) = P(r, τ = 1)/P(r, τ = 0), in their coupled
and free states, respectively. Substituting the relation between 	(r) and χ(r) in equation (8)
one can obtain the following equation for the two-particle SPCF:

−χ ′′ (r, τ ) + Veff (r, τ ) χ (r, τ ) = (E − Ee − Eh) χ (r, τ ) ; P(r) = χ2 (r, τ = 1)

(11a)

Veff (r, τ ) = −2τ

r
+

(√
P0(r)

)′′
√

P0(r)
. (11b)

Once the one-particle wavefunctions of the electron, fe(re), and the hole, fh(rh), are found,
then the effective potential Veff(r, τ ) (11b) can be calculated by using the relation (6) and the
one-dimensional wave equation (11a) for the SPCF can be solved by using a standard method.
One can verify that for the case of the free electron and the hole, as τ = 0 and E = Ee + Eh

the solution of equation (11a) is χ(r, τ = 0) = √
P0(r) and P(r, τ = 0) = P0(r).

3. Results and discussion

In our numerical work we find the exciton energy, E , and the SPCF, P(r), from relations (11)
by using a trigonometric sweep method [14]. In order to check the accuracy of our numerical
procedure, first we have calculated the exciton ground state binding energy in cylindrical
GaAs/Al0.3Ga0.7As and In0.55Al0.45As/Al0.35Ga0.65As discs (Rint = 0, db = 0), and we
compare our results with those obtained previously in [5–7] by using the variational method
(figure 2(a)) and with the results of the full 3D treatment realized in [2] (figure 2(b)). Besides,
we present the comparison of our calculations with the results obtained experimentally in [15]
(figure 2(c)). To be able to make a valid comparison, following these references we define the
exciton binding energy, Eb, as the difference between the energies of the unbound and bound
electron–hole pair:

Eb = E(τ = 0) − E(τ = 1) = Ee + Eh − E .

In figure 2(a), we present the exciton binding energy as a function of the radius of the
GaAs/Al0.3Ga0.7As disc with a thickness d0 = 7 nm when the WL thickness is equal to zero and
we compare our results (solid lines) with variational calculations obtained previously by using
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Figure 2. Comparison of our calculations for the exciton ground state binding energy in (a)
GaAs/Al0.3Ga0.7As and ((b), (c)) In0.55Al0.45As/Al0.35Ga0.65As structures with theoretical results
obtained previously ((a), (b)) and experimentally (c). The discs’ parameters are shown in the figures.
Our results (solid lines) for exciton ground state binding energies as a function of the quantum
disc radius are compared with (a) the variational calculations (different symbols) and (b) full 3D
treatment (open triangles). Our calculations (solid and dashed lines) of the diamagnetic shift of
the exciton energy as a function of an external magnetic field are compared with the experimental
results (squares) in (c).
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different types of the trial functions: one-parameter, hydrogen-like (open triangles, [5]), two-
parameter (open circles, [6]) and separable (open rectangles, [7]). As the variational calculation
gives a lower estimation of the binding energies, the comparison of the results in figure 2(a)
shows that for small disc radii our results are better than other variational calculations, whereas
for large disc radii our energies are similar to those obtained by using hydrogen-like and two-
parameter trial function. This is due to the fact that our trial function which does not use
parameters is more flexible in taking into account the change of system symmetry as the disc
radius becomes less than one Bohr radius. On the other hand, the comparison of our results
with the full 3D treatment presented in figure 2(b) shows that the binding energies obtained by
using our procedure are slightly lower than those from [2]; nevertheless, the agreement between
the two sets of the energies is excellent, considering the simplicity of our procedure.

Besides, we can compare our calculation with the diamagnetic shift of the exciton �E
defined as �E = E(B) − E(B = 0) which has been found experimentally in [15]. In
figure 2(c) we plotted the exciton diamagnetic shift in In0.55Al0.45As/Al0.35Ga0.65As quantum
disc as a function of the magnetic field, where lines indicate our calculated results and squares
are the experimental results obtained in [15]. It is seen that the results are in sufficiently good
agreement with the experimental results, taking into account the simplicity of our approximate
method. It should be noted that our results for a magnetic field stronger 20 T, as should be
expected, in contrast to the full 3D treatment realized in [2], start to deviate significantly from
the experimental values.

In what follows, we present our results of calculations only for In0.55Al0.45As/Al0.35Ga0.65As
nanostructures. Relevant spatial characteristics of the exciton in a QR are the separation
between the electron and the hole and the multipole momenta owing to the stronger confinement
of the hole in a QD. These characteristics can be expressed in terms of the two-dimensional
probability densities of finding of the electron, e(ρ, z), and of finding the hole, h(ρ, z),
at the point with the cylindrical coordinates (ρ, z), which in accordance to the relations (2c)
and (3) can be calculated as follows:

e (ρ, z) = ρ f 2
ρe (ρ) f 2

ze (z, ρ) Ch (z, ρ) ; h (ρ, z) = ρ f 2
ρh (ρ) f 2

zh (z, ρ) Ce (z, ρ) ;
(12a)

Cp (z, ρ) =
∫ ∞

0
f 2
ρp

(
ρp

)
dρp

∫ +∞

−∞
f 2
zp

(
zp, ρp

)
dzp

×
∫ 2π

0
	2

(√
ρ2 + ρ2

p − 2ρρp cos ϑ + (
z − zp

)2
)

dϑ. (12b)

In figure 3 we present the curves of the probability density of finding of the electron, e(ρ, z)
(solid lines), and the hole, h(ρ, z) (dotted lines), given by relations (12) at the points located
over the symmetry plane (z = d0/2) as a function of the distance ρ from the axis of two
In0.55Al0.45As/Al0.35Ga0.65As QRs with different exterior radii. One can see that in both cases
the positive charge predominates in the major part inside the QR, whereas the negative charge
predominates outside the QR in the peripheral regions close to the QR junctions. This is due
to the fact that the electron effective mass is smaller than that of the hole and therefore the
tunnelling of the electron toward both barrier regions (interior and exterior) is larger than the
tunnelling of the hole. Also one can observe that the electron tunnelling in the interior barrier
region becomes much more significant than that in the exterior region, as the QR interior radius
increases. The difference between the electron and hole distributions inside and outside the
ring should lead to the predominance of positive charge within the QR and negative charge in
the barrier regions close to the junctions.
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Figure 3. Probability density of finding the electron (solid lines) and the hole (dotted lines) over the
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0 (b). The width of the QRs in both cases is equal to 0.5 a∗
0 . The vertical solid lines show the

corresponding QR junction positions.

The corresponding density of charge distribution Q(ρ, z) for an exciton can be calculated
as

Q (ρ, z) = h (ρ, z) − e(ρ, z). (12c)

In figure 4 we present contour plots, which correspond to the level lines of the exciton charge
density of the radial distribution along a cross section in the middle of the quantum discs ((a),
(b)) and rings ((c), (d)) perpendicular to the y-direction, calculated by using the relations (12)
for structures without ((a), (c)) and with ((b), (d)) a WL. The shadowed parts of the figures
indicate the cross section of the corresponding structure parts which become charged positively
due to the presence of the exciton.



Effect of wetting layer on electron–hole correlation in quantum discs and rings 9501

Figure 4. Contour plots of the density of the radial charge distribution in a plane through the axis
of symmetry of a quantum disc ((a) and (b)) of radius 5 nm and thickness 5 nm and a QR ((c) and
(d)) with interior and exterior radii 10 and 15 nm and thickness 5 nm without ((a) and (c)) and with
((b) and (d)) a wetting layer. Solid lines correspond to positive charge density and dashed–dotted
lines are levels with negative charge density.
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It is seen from figures 4(a) and (c) that the density of the radial charge distribution inside
the disc and ring is positive and it is negative above, below and at the edges of the disc and
ring. A similar charge distribution in the presence of an exciton in type-II planar quantum dots
has been found previously [16]. Also one can see by comparing figures 4(a) and (c) that if the
major part of the negative charge in the quantum disc is located above and below the structure
in the quantum ring it is displaced toward the central hole region.

Due to axial symmetry of the structure the dipole moment for both distributions in
figures 4(a) and (c) is equal to zero and the charge distribution is characterized by the
quadrupole momentum which for the quantum disc in figure 4(a) is positive and for the QR
in figure 4(c) is negative. As the thickness of the dot diminishes and it becomes comparable
with the of the WL, the electron tunnelling reinforces and the absolute value of the quadrupole
momentum increases. It is interesting to analyse the relation of the quadrupole momentum
with transformations of the QD morphology. As has been established experimentally [1], the
morphology of InAs self-assembled QDs undergoes a remarkable change during the growth
process from that of a lens (roughly 20 nm in diameter, 7 nm in height) to one resembling a
volcano, with an increased lateral size (between 60 and 140 nm in outer diameter), a reduced
height (about 2 nm) and a well-defined centre hole of about 20 nm diameter. In accordance with
the results presented in figure 4, the quadrupole momentum has to invert its direction while a
lens is transformed to a volcano and its absolute value should be increased significantly due to
the drastic reducing of the dot thickness and the increase of the outer radius.

In figures 4(b) and (d) we display similar charge distributions in a quantum disc and a
QR whose heights are 5 nm deposited over a WL of 2 nm thickness. The existence of a thick
WL provides a significant lowering of the barrier height in lateral junctions, increasing the
probability for tunnelling from the QD toward the WL. Therefore the electron tunnelling into
the barrier regions, which can be observed in figures 4(a) and (c) for heterostructures without
the WL, is transformed into electron leaking inside the exterior WL in the quantum disc in
figure 4(b) and into the interior WL of the QR in figures 4(d). As a consequence, in the
presence of a thick WL there appears a strong separation between the electron and the hole
not only in the radial direction but also in the z-direction, which is characterized by a dipole
momentum oriented along the z-axis. It is should be noted that the above results are based on
the assumption that the confinement potential is given by a step function in the junctions. As has
been shown previously for self-assembled quantum dots of type-II, the strain presented in such
structures can significantly change the shape of the confinement potential [17]. Nevertheless,
we assume that our results for the charge distribution in quantum discs and rings owing to
the exciton trapping are qualitatively acceptable in spite of the fact that our simple model
underestimates the strain which is always present in these structures.

The separation between the particles due to stronger electron tunnelling inside the interior
WL of a QR may be reinforced or weakened by applying a magnetic field in the direction of
the crystal growth. On the one hand, the magnetic field provides an additional confinement
displacing both charged particles toward the symmetry axis within the ring, making them
closer to each other. On other hand, the energy levels lift, increasing the probability of the
tunnelling toward the interior WL, initially only for the lighter electron as the magnetic field is
relatively weak and afterwards for the heavier hole as the magnetic field becomes stronger. In
the first case the separation between particles increases, whereas in the second case it decreases.
Therefore, one can either increase or decrease the exciton binding energy, varying the electron–
hole separation by means of the magnetic field.

In figure 5 we display the exciton binding energy dependence on the magnetic field strength
in a disc (dashed line) with thickness 5 nm and radius 30 nm, and various QRs with different
WL thicknesses, db (solid lines). In all cases the thickness, interior and exterior radii of QRs are
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Figure 5. The exciton binding energy as a function of the magnetic field strength in the
In0.55Al0.45As/Al0.35Ga0.65As disc (dashed line) and various In0.55Al0.45As/Al0.35Ga0.65As rings
with different wetting layer thicknesses (solid lines).

equal to 5, 20 and 30 nm, respectively. As is evident from figure 5, there is a strong correlation
between the morphology and the magnetic field dependence of the exciton binding energy. One
can see that the exciton binding energy in the disc grows monotonically with increase of the
magnetic field which pushes both particles toward the disc axis, making them closer to each
other. The morphology of the ring is characterized by the presence of the central hole in the
structure and by the existence of two lateral junctions, outer and inner. This is the reason why
the curves in figure 5 for QRs are very different. In the ring, as the magnetic field increases,
the binding energy first starts to fall until it reaches a minimum. This is due to the fact that
under relatively weak magnetic field the heavier particle continues within the ring whereas
the lighter one begins to penetrate in the centre hole region and this results in the increasing
averaged electron–hole separation. As the magnetic field further increases, the hole also begins
to penetrate into the central region and electron–hole separation starts to decrease whereas the
binding energy starts to grow. It is seen from figure 5 that the position of the minimum in the
curves for the QR depends on the WL thickness. The larger the WL thickness the smaller is
the magnetic field strength corresponding to the minimum position. Such dependence of the
minimum position is related to the decrease of the barrier height in lateral junctions as the WL
thickness grows.

It should be stressed that the magnetic field dependence of the binding energy changes
significantly for larger QR thickness, d0, and smaller thickness of WL, db, when there is a
significant difference between the electron and the hole probabilities of the tunnelling in the
central barrier region as a consequence of an elevated effective lateral barrier height. In figure 6
we present results for QRs with increased thickness, 7 nm, diminished WL height, 1 nm,
reduced width, 5 nm, and with different inner radii, 10, 15 and 25 nm. The lateral barrier
heights in these structures are significantly more elevated than in case considered above, so that
the penetration of the particles inside the central region becomes possible only under a very
strong magnetic field.

One can see that the magnetic field dependences in the rings with outer radii 10 and 15 nm
are rather similar, and they are very different from the analogous dependence in the ring with
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Figure 6. The exciton binding energy as a function of the magnetic field strength in
In0.55Al0.45As/Al0.35Ga0.65As rings with different outer radii 10, 15, and 25 nm. In the inset, the
averaged electron–hole separation dependence on the magnetic field strength is plotted. The same
curve conventions are used as in the main figure.

outer radius 25 nm. If in the first case the binding energy increases monotonically while the
magnetic field strength increases to 25 T, the binding energy of the exciton in the QR with
outer radius 25 nm first starts to slowly increase until it reaches a maximum for B = 10 T and
it starts to fall as the magnetic field increases further. In order to facilitate the interpretation
of this result we present in the inset of figure 6 the dependence of the averaged electron–hole
separation on the magnetic field strength calculated by using to this aim the SPCF given by
the relation (10). Comparing the curves in the main figure and in the inset, one can observe a
mirror-like similarity of these curves; the smaller the binding energy the larger is the electron–
hole separation. It is interesting to note that the averaged electron–hole separation in their
bound state in 2D and 3D bulk cases in In0.55Al0.45As/Al0.35Ga0.65As material are equal to
half (≈5.2 nm) and one (≈10.4 nm) effective Bohr radius, respectively. Therefore one could
interpret the results of calculations for the averaged electron–hole separations presented in
the inset as if they were obtained for an exciton embedded in an effective isotropic space
whose dimension is fractional and ranged between two and three. This is due to incomplete
confinement in the z-direction in any finite thickness structure. Also, it is clear that the increase
of the ring radius makes the exciton structure more linear, diminishing additionally the effective
dimension of the space. This is a reason why the electron–hole separation in rings with outer
radii 15 and 25 nm is appreciably smaller than that in the ring with radius 10 nm. The curvature
of the structure in the last case is larger and the exciton configuration is rather two-dimensional
than one-dimensional, and conversely in the first case. The height of the effective inner lateral
barrier is lowered in the presence of the magnetic field proportionally to the value γ 2 R2

int.
For the considered structures this lowering is insufficient for a significant increasing of the
probability of the hole tunnelling in the central region, but it is sufficient for making this
probability significant for the electron in a QR with Rint = 20 nm as the magnetic field strength
becomes larger than 10 T. As a result, one can observe in the inset of figure 6 that in these
conditions the averaged electron–hole separation starts to increase sharply whereas the binding
energy in the main figure starts to fall. Such effect of a drastic increase of the electron–hole
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Figure 7. The exciton binding energy as a function of the outer radius in
In0.55Al0.45As/Al0.35Ga0.65As QRs with fixed widths for different intensities of the external
magnetic field. In the inset, the averaged electron–hole separation dependence on the outer radius
is plotted. The same curve conventions are used as in the main figure.

separation and the corresponding decrease of the exciton binding energy can be achieved by
applying significantly weaker magnetic field in a QR with larger inner radius that opens some
additional possibilities for exciton spectrum handling. As the inner barrier height lowering
in the presence of an external magnetic field (proportional to the value γ 2 R2

int) depends also
on the QR radius, one could expect that the electron–hole separation and the exciton binding
energy should be very sensitive to the variation of the QR lateral size. The larger the inner
QR radius and the lighter the particle, the higher is the probability for particle tunnelling in the
central barrier region. Hence, there is another possibility for a sharp increase of the electron–
hole separation by varying the QR radius. In figure 7 we present the results of calculations
of the exciton binding energy as a function of the In0.55Al0.45As/Al0.35Ga0.65As outer radius in
QRs with fixed width 5 nm for three different values of the magnetic field intensities, 0, 10
and 20 T. In the inset we display the corresponding variation of the averaged electron–hole
separation.

It is seen from the inset in figure 7 that as the outer radius, Rext, increases from 7.5 nm
(under the condition that the ring width is fixed) the electron and hole first become compressed
in the withdrawing opposite sides of the ring and the electron–hole separation increases until
it reaches a maximum when Rext becomes equal to approximately one effective Bohr radius
(about 10 nm). As Rext further increases, the electron and hole jump on the same side of
the ring and the averaged electron–hole separation becomes to decrease rather rapidly. In the
presence of a weak or intermediate magnetic field the interior barrier height decreases slowly
as the inner radius grows, making possible the electron tunnelling in the central barrier region.
As the result the electron–hole separation again starts to increase. One can observe in the inset
that such increase is present from Rext ≈ 17 nm when B = 10 T and from Rext ≈ 22 nm when
B = 20 T. Also one can observe a complete concordance between the curves in the inset and
in the main figure. The larger the electron–hole separation the smaller is the exciton binding
energy, and vice versa.
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4. Conclusions

In order to study the effects of the wetting layer and the external magnetic field on the charge
distribution related to the presence of an electron–hole pair in ring-shaped quantum dots we
propose a simple method for calculating the ground state wavefunction of an exciton confined
in flat quantum discs and rings. We present the multidimensional exciton wavefunction as a
product of the one-particle wavefunctions of the electron and the hole (which in our calculations
we have found in the adiabatic approximation) with an envelope function that depends only on
the electron–hole separation. Starting from the variational principle we show that this function
is a solution of the one-dimensional equation which describes the radial part of a hydrogen-
like atom in an effective space with a fractional dimension. On the other hand, we have
found that the solution of this equation allows us to calculate the electron–hole spatial pair
correlation function directly. Our numerical results show that the exciton binding energy, and
the averaged electron–hole separation, and related to this the separation charge distribution
inside and outside the quantum dot, are very sensitive to the heterostructure morphology, the
thickness of the wetting layer and the variation of the magnetic field strength. Such sensitivity
of the electronic properties is related to two important factors. The first of them is the lowering
of the inner barrier height due to the presence of the wetting layer and the external magnetic
field. This lowering reinforces considerably the particles tunnelling inside the central barrier
region. The second factor contributing to the particle separations is the considerable difference
between the electron and the hole effective masses, making more probable the tunnelling of the
electron rather than that of the hole.

We present the results of calculation of the charge distribution in heterostructures with ring-
like geometry related to the presence of an exciton. It is found that the peripheral region of the
quantum dot is charged negatively and the charged distribution is characterized by a negative
quadrupole momentum when the radius of the central barrier region is small. The charge
distribution becomes opposite when the radius of the central barrier region becomes sufficiently
large. In this case the tunnelling of the electron inside this region predominates, the negative
charge is located mainly near the inner junction, and the sign of the quadrupole momentum
becomes positive. The situation is also notably changed in heterostructures with an increase of
the wetting layer thickness. Our calculations show that in this case the heterostructure acquires
a dipole momentum oriented in the crystal growth direction due to the strong electron tunnelling
inside the central hole region which becomes charged negatively.

Our simple formalism applied to a simplified model of quantum disc, which ignores the
effect of wetting layer, gives results that are in a good agreement with those obtained previously
by other authors.
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